Делаем сами - Информационный портал

Делаем сами - Информационный портал

» » Любые две хорды окружности пересекаются верно ли. Окружность. Основные теоремы. Теорема о произведении отрезков хорд

Любые две хорды окружности пересекаются верно ли. Окружность. Основные теоремы. Теорема о произведении отрезков хорд














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: повысить мотивацию к обучению; развивать вычислительные навыки, сообразительность, умение работать в команде.

Ход занятия

Актуализация знаний. Сегодня мы продолжим говорить об окружности. Позвольте напомнить определение окружности: что называется окружностью?

Окружность - это линия, состоящая из всех точек плоскости, которые находятся на заданном расстоянии от одной точки плоскости, называемой центром окружности.

На слайде изображена окружность, отмечен ее центр - точка О, проведены два отрезка: ОА и СВ. Отрезок ОА соединяет центр окружности с точкой на окружности. Он называется РАДИУСОМ (по-латыни radius - “спица в колесе”). Отрезок СВ соединяет две точки окружности и проходит через ее центр. Это диаметр окружности (в переводе с греческого – “поперечник”).

Также нам понадобится определение хорды окружности - это отрезок, соединяющий две точки окружности (на рисунке – хорда DE).

Давайте выясним вопрос о взаимном расположении прямой и окружности.

Следующий вопрос и он будет основным: выяснить свойства, которыми обладают пересекающиеся хорды, секущие и касательные.

Доказывать эти свойства вы будете на уроках математики, а наша задача научиться применять эти свойства при решении задач, так как они находят широкое применение на экзаменах и в форме ЕГЭ, и в форме ГИА.

Задание для команд.

  • Изобразить и записать свойство пересекающихся в точке Р хорд КМ и NF.
  • Изобразить и записать свойство касательной КМ и секущей КF.
  • Изобразить и записать свойство секущих КМ и МF.

Используя данные на рисунке, найдите х. Слайд 5–6

Кто быстрее, правильней. С последующим обсуждением и проверкой решения всех задач. Отвечающие зарабатывают для своей команды поощрительные баллы.

Ну, а теперь приступим к решению более серьезных задач. Вашему вниманию предлагается три блока: пересекающиеся хорды, касательная и секущая, две секущие. Подробным образом разберем решение по одной задачи из каждого блока.

(Разбирается решение с подробной записью №4, №7, №12)

2. Практикум по решению задач

а) Пересекающиеся хорды

1. E – точка пересечения хорд AB и CD. AE=4, AB=10, СE:ED=1:6. Найти CD.

Решение:

2. E – точка пересечения хорд AB и CD. AB=17, CD=18, ED=2CE. Найти AE и BE.

Решение:

3. E – точка пересечения хорд AB и CD. AB=10, CD=11, BE=CE+1. Найти CE.

Решение:

4. E – точка пересечения хорд AB и CD. ED=2AE, CE=DE-1, BE=10. Найти CD.

Решение:

б) Касательная и секущая

5. Из одной точки проведены к окружности касательная и секущая. Касательная равна 6, секущая – 18. Определить внутренний отрезок секущей.


Решение:

6. Из одной точки проведены к окружности касательная и секущая. Найти касательную, если известно, что она меньше внутреннего отрезка секущей на 4 и больше внешнего отрезка на 4.


Решение:

7. Из одной точки проведены к окружности касательная и секущая. Найти секущую, если известно, что внутренний её отрезок относится к внешнему, как 3:1, а длина касательной равна 12.


Решение:

8. Из одной точки проведены к окружности касательная и секущая. Найти внешний отрезок, секущей, если известно, что внутренний её отрезок 12, а длина касательной 8.


Решение:

9. Касательная и секущая, исходящие из одной точки, соответственно равны 12 и 24. Определить радиус окружности, если секущая удалена от центра на 12.


Решение:

в) Две секущие

10. Из одной точки проведены к окружности две секущие, внутренние отрезки которых соответственно равны 8 и 16. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой. Найти длину каждой секущей.


Решение:

11. Из одной точки проведены к окружности две секущие. Внешний отрезок первой секущей относится к своему внутреннему, как 1:3. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой и относится к своему внутреннему отрезку, как 1:8. Найти длину каждой секущей.


Решение:

12. Через точку А, которая находится вне окружности на расстоянии 7 от её центра, проведен прямая, пересекающая окружность в точках В и С. Найдите длину радиуса окружности, если АВ=3, ВС=5.


Решение:

13. Из точки А проведены к окружности секущая длиной 12 см и касательная, составляющая внутреннего отрезка секущей. Найдите длину касательной.


Решение:

  1. 10,5; 17,5
  2. 12;18

3. Закрепление знаний

Считаю, что вы обладаете достаточным запасом знаний, чтобы отправится в небольшое путешествие по лабиринтам вашего интеллекта, посетив следующие станции:

  • Соображай-ка!
  • Решай-ка!
  • Отвечай-ка!

На станции можно находиться не более 6 минут. За каждое верное решение задачи команда получает поощрительные баллы.

Командам вручаются маршрутные листы:

Маршрутный лист

Станция Номера задач Отметка о решении
Решай-ка! №1, №3
Соображай-ка! №5, №8
Отвечай-ка! №10, №11

Хотелось бы подвести итоги нашего занятия:

Помимо новых знаний надеюсь, вы лучше познакомились друг с другом, приобрели опыт работы в команде. А как вы думаете, полученные знания находят где-то применение в жизни?

Поэт Г. Лонгфелло был еще и математиком. Наверное, поэтому яркие образы, украшающие математические понятия, которые он использовал в своем романе “Каванг”, позволяют запечатлеть на всю жизнь некоторые теоремы и их применение. Читаем в романе следующую задачу:

“Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого требовалось определить глубину озера” (1 пядь равна 10 дюймам, 2 локтя – 21 дюйму).

А решается эта задача на основе свойства пересекающихся хорд. Посмотрите на рисунок, и станет ясно, как находится глубина озера.

Решение:

Теоретические справочные материалы по геометрии для выполнения заданий от репетитора по математике. В помощь ученикам при решении задач.

1) Терема о вписанном угле в окружность.

Теорема : вписанный в окружность угол равен половие градусной меры дуги, на которую он опирается (или половине центрального угла, соответствующего данной дуге), то есть .

2) Следствия из теоремы о вписанном угле в окружность.

2.1) Свойство углов, опирающихся на одну дугу.

Теорема: если вписанные углы опираются на одну дугу, то они равны (если они опираются на дополнителные дуги, их сумма равна

2.2) Свойство угла, опирающегося на диаметр .

Теорема: вписанный угол в окружность опирается на диаметр тогда и только тогда, когда он прямой.

AC-диаметр

3) Cвойство отрезков касательных. Окружность, вписанная в угол.

Теорема 1: если из одной точки, не лежащей на окружности, проведены к ней две касательные, то их отрезки равны, то есть PB=PC .

Теорема 2: Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть PO-биссектриса.

4) Свойство отрезков хорд при внутреннем пересечении секущих.
Теорема 1: произведение отрезков одной хорды равно произведению отрезков другой хорды, то есть

Теорема 2: угол между хордами равен полусумме дуг, которые этими хордами образуются на окружности, то есть

Вписанная и описанная окружности

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Теорема 2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника

2.Теоремы (свойства параллелограмма):

· В параллелограмме противоположные стороны равны и противоположные углы равны: , , , .

· Диагонали параллелограмма точкой пересечения делятся пополам: , .

· Углы, прилежащие к любой стороне, в сумме равны .

· Диагонали параллелограмма делят его на два равных треугольника.

· Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .

Признаки параллелограмма:

· Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм.

· Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

· Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона .

· Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника

3. Трапеция - четырехугольник, у которого две стороны параллельны, а две стороны не параллельны. Параллельные стороны называются основаниями трапеции , две другие - боковыми сторонами .

Высота трапеции - расстояние между прямыми, на которых лежат основания трапеции, любой общий перпендикуляр этих прямых.

Средняя линия трапеции - отрезок, соединяющий середины боковых сторон.

Свойство трапеции:

Если в трапецию вписана окружность, то сумма оснований равна сумме боковых сторон: , а средняя линия - полусумме боковых сторон: .

Равнобедренная трапеция - трапеция, у которой боковые стороны равны . Тогда равны диагонали и углы при основании , .

Из всех трапеций только около равнобедренной трапеции можно описать окружность, так как окружность можно описать около четырехугольника, только если сумма противоположных углов равна .

В равнобедренной трапеции расстояние от вершины одного основания, до проекции противоположной вершины на прямую, содержащую это основание равно средней линии.

Прямоугольная трапеция - трапеция, у которой один из углов при основании равен .

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство. Пусть E - точка пересечения хорд AB и CD (рис. 110). Докажем, что AE * BE = CE * DE.

Рассмотрим треугольники ADE и CBE. Их углы A и C равны, так как они вписанные и опираются на одну и ту же дугу BD. По аналогичной причине ∠D = ∠B. Поэтому треугольники ADE и CBE подобны (по второму признаку подобия треугольников). Таким образом, DE/BE = AE/CE, или

AE * BE = CE * DE.

Теорема доказана.

5. Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO =

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).

6. Теорема Фалеса

Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки

Обратная теорема Фалеса

Если прямые, пересекающие две другие прямые (параллельные или нет), отсекают на обеих из них равные (или пропорциональные) между собой отрезки, начиная от вершины, то такие прямые параллельны

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

  • В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x о;y о) имеет вид:
(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2