Делаем сами - Информационный портал

Делаем сами - Информационный портал

» » Блок питания на транзисторах 5 вольт. Китайские импульсные адаптеры - блоки питания. Изготовление печатной платы

Блок питания на транзисторах 5 вольт. Китайские импульсные адаптеры - блоки питания. Изготовление печатной платы

5 вольт – одно из самых широко используемых напряжений. От этого напряжения питается большинство программируемых и непрограммируемых микроконтроллеров, всевозможных индикаторов и тестеров. Кроме того 5 вольт используется для зарядки всевозможных гаджетов: телефонов, планшетов, плееров и так далее. Я уверен, что каждый радиолюбитель может придумать множество применений этому напряжению. И в связи с этим я подготовил для вас три хороших на мой взгляд варианта блоков питания со стабилизированным выходным напряжением 5 вольт.

Первый вариант – самый простой.

Этот вариант отличается минимальным количеством используемых деталей, крайней простотой сборки и невероятной ‘живучестью’ – блок почти нереально убить. Итак перейдем к схеме.

Эта схема срисована с недорогой зарядки телефона, обладает стабилизацией выходного напряжения и способна выдавать ток до 0.5 А. На самом деле блок может выдавать и больше, но при повышении тока на выходе начинает срабатывать защита от перегрузки и выходное напряжение начинает уменьшаться. Защита от перегрузок и КЗ реализована на резисторе 10 ом в цепи эмиттера силового транзистора и маломощном транзисторе s9014 . При повышении тока через первичную обмотку трансформатора на эмиттерном резисторе создается падение напряжения, достаточное для открытия s9014, который в свою очередь притягивает базу силового транзистора к минусу, тем самым закрывая его и уменьшая длительность импульсов через первичную обмотку. При изменении номинала данного резистора можно увеличить или уменьшить ток срабатывания защиты. Сильно увеличивать не стоит, так как это повлечет за собой повышение нагрева силового транзистора и увеличит вероятность выхода последнего из строя.

Стабилизация выполнена на распространенном оптроне pc817 и на стабилитроне 3.9 В (при изменении номинала которого можно менять выходное напряжение). При превышении выходного напряжения, светодиод оптрона начинает светиться ярче, вызывая повышение тока через транзистор оптрона на базу s9014 и, как следствие, закрытие силового ключа. При уменьшении выходного напряжения, наоборот, транзистор оптрона начнет закрываться и s9014 не будет обрывать импульсы на базе силового ключа, тем самым увеличивая их длительность и, соответственно, увеличение выходного напряжения.

Особое внимание стоит уделить намотке трансформатора. Это зачастую является фактором, отталкивающим новичков от импульсных блоков питания. Итак, поскольку блок однотактный, нам потребуется трансформатор с немагнитным зазором между половинками сердечника. Зазор нужен для быстрого размагничивания сердечника и для предотвращения вхождения феррита в насыщение. Расчет трансформатора в идеале надо проводить в специальных программах, но для тех, кому этого делать не хочется, скажу, что в таких маломощных блоках питания первичная обмотка состоит из 190-220 витков провода 0.08-0.1мм. Грубо говоря, чем больше сердечник, тем меньше витков. Поверх первички в том же направлении мотается базовая обмотка. Она состоит из 7 – 15 витков того же провода. И в конце уже более толстым проводом мотается вторичка. Число витков 5-7. Крайне важно мотать все обмотки в одном направлении и помнить, где начало и конец. На схеме и на плате (которую можете скачать тут) точками указаны начала обмоток.

По схеме тут больше добавить нечего, она довольно простая и не требует особых навыков для сборки. Все компоненты можно изменять в пределах 25%, блок прекрасно будет работать. Силовой транзистор можно ставить любой обратной проводимости, соответствующей мощности и с расчетным напряжением коллектора не менее 400 вольт. Базовый транзистор – любой маломощный NPN с такой же цоколёвкой, как и s9014 .

Данный блок мощно применять там, где не нужен высокий ток, а нужна компактность, например для питания Arduino или для зарядки устройств с аккумуляторами небольшой ёмкости. Из плюсов данного бп можно отметить компактность, наличие защиты и стабилизации и, конечно, простоту сборки. Из минусов, пожалуй, только малая выходная мощность, которую кстати можно поднять, увеличивая ёмкость входного фильтрующего конденсатора.

Блок кстати выглядит так:

Второй вариант – более мощный.

Этот вариант очень похож на предыдущий, но мощнее. Блок имеет доработанную обратную связь и, следовательно, лучшую стабилизацию. Давайте взглянем на схему.

Схема представляет собой блок дежурного питания компьютерного бп. В отличие от предыдущей схемы в этой более мощный силовой транзистор, большая ёмкость входного фильтрующего конденсатора и, самое главное, трансформатор с большей габаритной мощностью. Всё это как раз и влияет на выходную мощность. Ещё в данной схеме, в отличие от первой, сделана нормальная стабилизация на TL431 – источнике опорного напряжения.

Принцип работы тут такой же, как и у предыдущего варианта. Через резистор 560 кОм на базу силового ключа подается начальное напряжение смещения, он приоткрывается и через первичную обмотку начинает течь ток. Нарастание тока в первичке вызывает нарастание тока во всех остальных обмотках, значит ток, возникающий в базовой обмотке, будет ещё сильнее открывать транзистор, и этот процесс продолжиться до тех пор, пока транзистор полностью не откроется. Когда он откроется, ток через первичку перестанет изменяться, а значит на вторичке перестанет течь и транзистор закроется и цикл будет повторяться.

Про работу защиты по току и стабилизации я подробно рассказал выше и не вижу смысла повторяться, так как тут всё работает точно так же.

Поскольку этот блок питания сделан на основе дежурки компьютерного блока, трансформатор я использовал готовый и не перематывал. Трансформатор EEL-19B. Расчетная габаритная мощность 15 – 20 Вт.

Как и в предыдущей схеме номиналы компонентов можно отклонять в пределах 25%, так как в разных компьютерных бп эта схема прекрасно работает с разными компонентами. Этот экземпляр, благодаря выходному току в 2 А можно использовать как зарядку для телефонов и планшетов или для прочих потребителей, требующих большой ток. Из плюсов данной конструкции можно отметить простоту добычи радиодеталей, ведь наверняка у каждого есть нерабочий блок питания от старого компа или телевизора, а там элементарной базы хватит на 3 – 4 таких бп. Так же плюсом можно считать немалый выходной ток и неплохую стабилизацию. Из минусов справедливо можно отметить размер платы (она довольно высокая из-за трансформатора) и возможность свиста при холостом ходу. Свист может появиться из-за неисправности какого-либо элемента, либо просто из-за слишком низкой частоты преобразования на холостом ходу. Под нагрузкой частота увеличивается.

Третий вариант – самый мощный.

Этот вариант для тех, кому нужна огромная мощность и прекрасная стабилизация. Если вам не жалко пожертвовать компактностью, этот блок специально для вас. Итак, смотрим схему.

В отличие от предыдущих двух вариантов, в этом применяется специализированный ШИМ – контроллер UC3843 , который, в отличие от транзисторов, как ни как умеет менять ширину импульсов и специально сделан для применения в однотактных блоках питания. Также у UCшки частота не меняется в зависимости от нагрузки и её можно четко рассчитать в специализированных калькуляторах.

Итак принцип работы. Начальное питание поступает через резистор 300 кОм на 7 ножку микросхемы, она запускается и начинает генерировать импульсы, которые выходят с 6 ножки и идут на полевик. Частота этих самых импульсов зависит от элементов Rt и Ct. С указанными компонентами частота на выходе 78,876 кГц. Вот кстати устройство микросхемы:

На этой микросхеме очень удобно реализовывать защиту по току, у неё для этого есть специальный вывод – current sense. При напряжении больше 1 вольта на этой ножке сработает защита и контроллер снизит длительность импульсов. Стабилизация здесь сделана при помощи встроенного усилителя ошибки current sense comparator. Поскольку на 2 выводе у нас 0 вольт, усилитель error amp. Всегда выдает логическую единицу и она идёт на вход усилителя current sense comparator, формируя тем самым опорное напряжение 1 вольт на его инвертирующем входе. При превышении напряжения на выходе блока питания, фототранзистор оптрона открывается и шунтирует 1 вывод микросхемы на минус. При этом снижается напряжение на инвертирующем входе current sense comparator, а так как на его не инвертирующем в момент открытия транзистора нарастает напряжение, то в какой то момент оно превысит напряжение на инвертирующем входе (при КЗ случается то же самое) и current sense comparator выдаст логическую единицу, что в свою очередь приведет к уменьшению длительности импульсов и, в конечном итоге, к снижению напряжения на выходе блока питания. Стабилизация в данном блоке питания очень хорошая, чтоб вы понимали, насколько она хорошая, при подключении резистора 1 Ом на выход, напряжение падает всего на 0.06 вольта, при этом на нём рассеивается 25 Вт тепла и он сгорает через пару секунд. Вообще этот блок может выдавать и 30 Вт и 35, так как в роле ключа здесь применён полевой транзистор. На схеме указан 4n60, но я поставил irf840, так как у меня их много. Микросхема может выдавать на управление полевиком ток до 1 А, что дает возможность без дополнительного драйвера управлять довольно мощными полевыми ключами.

Всем известно, что существует такая операция как предпродажная подготовка товара. Простое, но очень необходимое действие. По аналогии с ней уже давно применяю предэксплуатационную подготовку всех покупаемых товаров китайского производства. Всегда в этих изделиях имеется возможность доработки, причём замечу реально необходимой, которая является следствием экономии производителя на качественном материале отдельных его элементов или не установки их вообще. Позволю себе быть мнительным и выскажу предположение, что всё это не случайно, а является составляющим элементом политики производителя направленной в конечном итоге на уменьшение срока службы производимого товара, следствием чего является увеличение продаж. Приняв решение об активном использовании миниатюрного электромассажёра (конечно же, китайского производства) сразу же обратил внимание на его блок питания внешне похожий на зарядное устройство мобильного телефона да ещё и с надписью COURIER CHARGER - мобильное зарядное устройство. Имеющее OUTPUT в 5 вольт и 500 мА. Даже не убеждаясь в его исправности, разобрал и посмотрел содержимое.

Установленные на плате электронные компоненты и особенно стабилитрон на выходе свидетельствовали, что это действительно блок питания. К слову, отсутствие диодного моста позитивным моментом не считаю.

Подключённая нагрузка, в виде двух лампочек по 2,5 В последовательно, с токопотреблением в 150 мА, обнаружила на выходе 5,76 В. Прибор рассчитан на питание тремя батарейками АА - 4,5 В, полагаю допустимым и 5 В от адаптера, но прочее, в данном конкретном случае, явно ни к чему.

Поискам схемы в интернете предпочёл отрисовать в , по сделанному предварительно фото, печатную плату с расположенными на ней электронными компонентами.

Схема адаптера и переделка

Изображение печатной платы дало возможность начертить существующую схему БП. Транзисторная оптопара CHY 1711, транзисторы С945, S13001 и другие компоненты не позволяли назвать схему примитивной, но с существующими номиналами одних компонентов и отсутствием других она меня не устраивала.

В новую схему был введён плавкий предохранитель на 160 мА, а вместо имеющегося выпрямителя диодный мост, состоящий из 4-х диодов 1N4007. Номинал стабилитрона VD3 управляющего оптроном изменён с 4V6 на 3V6, что должно снизить выходное напряжение до желаемого.

На плате имелось достаточное количество свободного места так, что осуществить планируемые изменения труда не составило. Вновь собранный блок питания имел на выходе напряжение практически 4,5 вольта.

И токоотдачу до 300 мА включительно.

В результате некоторое количество дополнительных электронных компонентов и время, отданное интересной работе, дали мне возможность иметь приличный блок питания, который надеюсь, прослужит верой и правдой длительное время. Отладкой БП занимался Babay.

Данный на 5 вольт можно применить для питания маломощной нагрузки, например, электронного термометра, микрокалькулятора, электронных часов.

Технические показатели импульсного источника питания

  • Входное напряжение — 220 ±15% В;
  • Частота преобразования — 35 кГц;
  • Предельная мощность нагрузки — 3 Вт;
  • КПД — до 75%;

Базовым модулем данного импульсного блока питания является преобразователь напряжения на трансформаторе Т1 и транзисторах VT1, VT2, построенный по полумостовой схеме. Диодный мост выпрямляет переменное напряжение сети. На радиоэлементах R1, VD2 – VD4 построен параметрический стабилизатор, который совместно с емкостями C2 – C4 создает делитель напряжения.

Для питания задающего генератора используется напряжение, снятое с VD2. Сопротивление R1 выполняет двойную роль, с одно стороны он является балластным в стабилизаторе, образуя тем самым вольтдобавку для емкости C8, а с другой стороны снижает ток потребления от электросети в момент случайного замыкания на выходе импульсного блока питания.

Операционный усилитель DD1 подключенный по схеме мультивибратора образует задающий генератор. Посредством емкости C7 обеспечивается гальваническая развязка между задающим генератором и VT2.

Трансформатор Т1 собран на ферритовом кольце марки 2000НМ и размером К12х8х3. Его обмотки содержат: I – 500 вит. эмалированного провода ПЭВ-2 диаметром 0,15мм, II – 50 вит. (для 5 вольт) того же провода диаметром 0,31 с отводом посередине.

Настройка импульсного блока питания заключается в подборке сопротивлений R1 и R9 под определенное значение тока нагрузки. Сопротивление R9 подбирают исходя из необходимости насыщения транзистора VT1, которое определяют при помощи осциллографа.

Величину R1 необходимо подобрать такую, чтобы при нормальной нагрузке ток, протекающий сквозь стабилитроны VD3 и VD4, был более 5 мА. Для уменьшения пульсаций напряжения на выходе значения емкостей С3, С4 необходимо в два раза увеличить. Помимо этого, величину пульсаций еще возможно уменьшить путем добавления параллельно емкости С6 оксидного конденсатора на 50…100 мкФ на номинальное напряжение 10 В.

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:


Почти любая электронная схема – от простых схем на транзисторах и операционных усилителях и до сложнейших микроконтроллерных систем – требует для работы источника стабилизированного питания. Легко построить такой источник, используя отрицательную обратную связь и сравнивая выходное постоянное напряжение с некоторым постоянным опорным напряжением. Лабораторный стенд питания, отдающий в нагрузку ток до 21 ампера, надежно работает при организации питания различных экспериментальных схем. Стабильность выходного напряжения и большой выходной ток делают удобным и надежным источник питания мощностью 110 ватт.

Традиционные источники питания с низкочастотным трансформатором, выпрямителем и стабилизатором с непрерывным способом стабилизации просты, надежны, почти не создают электромагнитных помех. Сравнение с импульсными источниками питания, обладающими повышенной сложностью, трудностями, связанными с оптимизацией их энергетических и качественных показателей, сравнительная дороговизна высоковольтных переключающих транзисторов, часто выходящих из строя из-за неправильного проектирования и монтажа источника питания позволяет отдать предпочтение традиционным источникам питания при сжатых сроках изготовления и ограниченном бюджете.

Параметры источника питания:
Напряжение питания…………...переменное 220 вольт ± 12%
Выходное напряжение…………постоянное +5 вольт ± 5%
Максимальный выходной ток…21 ампер
Уровень пульсаций…………….30 милливольт

Стабилизатор напряжения

Стабилизатор предназначен для дальнейшего подавления пульсаций, содержащихся в постоянном напряжении, поступающем от выпрямителя через конденсаторный фильтр. Стабилизатор сглаживает пульсации, оставшиеся в постоянном напряжении после конденсаторного фильтра и снижает зависимость выходного напряжения источника питания от колебаний напряжения сети 220 Вольт, 50 Герц.

Стабилизатор представляет собой схему с последовательно-параллельной обратной связью. Снижение выходного напряжения, вызванное повышением тока нагрузки и изменения напряжения вызванными другими причинами, компенсируются благодаря сравнению усилителем разности опорного напряжения и выходного. Если выходное напряжение становится больше опорного, то напряжение на выходе усилителя разности уменьшится, тем самым, обеспечивая снижение выходного напряжения.

Нестабилизированное напряжение около 15 вольт питает источник опорного напряжения, состоящий из диодного ограничителя тока VD1, стабилитрона VD2 и резисторов R3, RP1, R11. Усилитель разности, состоящий из транзисторов VT4, VT5 и резисторов R1, R2 и R12 питается от входного нестабилизированного напряжения. Выходом источника опорного напряжения является подвижный контакт переменного резистора RP1, соединенный с входом усилителя разности, которым является база транзистора VT4. Вторым входом усилителя разности является база транзистора VT5, соединенная с выходом стабилизатора напряжения. Выход усилителя разности – коллектор транзистора VT5.

Основные компоненты регулирующего элемента – транзисторы VT2 и VT3, управляемые транзистором VT1. База VT1 соединена с выходом усилителя разности. При изменении напряжения на коллекторе VT5 изменяется напряжение на выходе источника питания. Через резистор R2 протекает ток базы, необходимый для работы составного транзистора – VT1 и VT2, VT3. Разность напряжений между опорным напряжением и выходным источника питания помноженная на коэффициент усиления усилителя разности алгебраически складывается с напряжением на базе транзистора VT1, создаваемым током через резистор R2.

Регулирующий элемент – составной транзистор VT1 и VT2, VT3, в котором VT1 предназначен для уменьшения управляющего тока регулирующего элемента. Транзистор средней мощности VT1 управляет током, поступающим на базы параллельно включенных мощных транзисторов VT2 и VT3. Транзисторы VT2 и VT3 – проходные. При малом выходном токе коллекторный ток транзистора VT1 имеет малое значение, так как сопротивление цепи соединенной параллельно R4 неизменно, ток эмиттера VT1 поддерживается на неизменном уровне. Из-за разброса напряжения база-эмиттер включенных параллельно проходных транзисторов необходимо последовательно с эмиттером проходного транзистора включать группы резисторов R5-R7 и R8-R10. Небольшое сопротивление создаваемое параллельно включенными резисторами R5-R7 и R8-R10 приблизительно одинаково распределяют ток между проходными транзисторами VT2 и VT3. Одновременно с выравниванием токов резисторы R5-R10 защищают источник питания от выхода из строя при кратковременной перегрузке. Конденсатор С2 подавляет высокочастотную составляющую пульсаций выходного напряжения источника питания.

Конденсаторы K73-16 можно заменить на другой тип K73-17 или зарубежные аналоги. Резисторы R1-R4, R11 и R12 мощности от 0,125 Вт и более, выводные или планарные. Мощность резисторов R5-R10 зависит от максимального тока нагрузки, требуемого от источника питания. Если ток не будет превышать 10 ампер, то резисторы R5-R10 можно установить мощностью 2 ватта, при максимальном токе нагрузки 5 ампер можно установить мощностью 1 ватт. Вместо стабилитрона SZ/BZX84C5V6LT1/T3,G можно применить стабилитрон другого типа с напряжением стабилизации 5,6 вольт и диапазоном тока стабилизации содержащим величину 5 миллиампер, обеспечиваемую диодным ограничителем тока. Применение транзисторов TIP3055 обусловлено наибольшим током нагрузки. Суммарный наибольший ток двух TIP3055 составляет 30 ампер. При допустимом наибольшем токе нагрузки 21 ампер остается запас на кратковременную перегрузку около 30 %. Если выходной ток 21 ампер не требуется можно применить другие транзисторы, ориентируясь на требуемый ток нагрузки. Два проходных транзистора нужно обязательно установить на один радиатор для обеспечения одинакового температурного режима. Вывод коллектора у TIP3055 соединен с металлическим элементом корпуса. Два мощных транзистора можно устанавливать на один радиатор, так как коллекторы мощных транзисторов объединены в схеме стабилизатора. Радиатор следует применить наиболее возможного размера, исходя из полного использования объема корпуса прибора.

В состав источника питания входит схема, преобразующая переменное напряжение 220 вольт в постоянное 15 вольт – источник нестабилизированного напряжения. Выход источника нестабилизированного напряжения 15 вольт подключается к входу стабилизатора постоянного напряжения.

При сборке сетевой шнур подключается к винтовым клеммам автоматического выключателя Q1. Для индикации включения прибора и наличия напряжения 220 вольт служит светодиодная лампа H1. Трансил-диод VD1 защищает источник питания от бросков повышенного напряжения. Конденсаторы C1-C4 снижают уровень помех, создаваемых источником питания в сети 220 вольт и одновременно снижают прохождение высокочастотных помех из сети в источник питания. Переменное напряжение с вторичной обмотки трансформатора Т1 величиной 16,5 вольт выпрямляется диодным мостом VD2. Конденсаторы большой емкости С5-С9 снижают пульсации в выпрямленном напряжении. Большая суммарная емкость конденсаторов обусловлена током нагрузки источника питания.

Выбор трансформатора производится в зависимости от наибольшего тока, потребляемого нагрузкой. Оптимальная вторичная обмотка – рассчитанная на напряжение 16,5 вольт. Если это напряжение выше применить трансформатор можно. Увеличение напряжения вторичной обмотки создаст запас по напряжению при уменьшении напряжения сети 220 вольт, но одновременно возрастет бесполезно теряемая мощность на нагрев транзисторов, установленных на радиатор. Применять трансформатор с выходным напряжением более 20 вольт не следует. Напряжение менее 16,5 вольт с вторичной обмотки нежелательно. Падение напряжения на диодном мосте составит около 1,2 вольта, снижать напряжение на входе стабилизатора менее 15 вольт не следует, иначе возрастут пульсации на выходе источника питания. Выбрать компромисс между запасом по падению напряжения сети 220 вольт и нагревом мощных транзисторов следует в каждом конкретном случае в зависимости от максимального тока нагрузки. Перед сборкой источника питания обязательно проверьте трансформатор на способность отдавать в нагрузку требуемый ток. Для этого к контактам вторичной обмотки необходимо подключить нагрузку, сопротивление которой вычислено по закону Ома. Полученное сопротивление следует умножить на коэффициент 0,7 для создания запаса по току. Потребляемый ток необходимо контролировать амперметром переменного тока. Проверка работы трансформатора с использованием нагрузки должна продолжаться не менее часа. В результате проверки не должно быть сильного нагрева трансформатора относительно окружающих предметов.

Автоматический выключатель Q1 устанавливается на DIN-рейку, которая прикреплена к передней панели источника питания. Q1 одновременно выполняет две функции: тумблера питания и устройства защиты от перегрузки по току. Выбрать автоматический выключатель нужно другой с меньшим током срабатывания защиты, если уменьшается максимальный ток нагрузки. Лампа Н1 и автоматический выключатель Q1 соединяются проводами используя винтовые контакты. Трансил-диод VD1 и конденсаторы С1…С4 размещаются на отдельной печатной плате. Диодный мост VD2 следует установить на радиатор. Монтаж цепей, находящихся после выхода вторичной обмотки следует выполнять проводом не менее 2,5 квадратных миллиметров.

Литература:
П. Хоровиц, У. Хилл Искусство схемотехники.
http://www.futurlec.com/Transistors/TIP3055.shtml
http://www.electronica-pt.com/datasheets/bd/BD235.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/99261/CENTRAL/2N2924.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/83924/MOTOROLA/BZX84C5V6LT1.html
Диодный источник тока Денисов П. К. http://www.rlocman.ru/review/article.html?di=141588

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

BD233

1 В блокнот
VT2, VT3 Биполярный транзистор

TIP3055

2 В блокнот
VT4, VT3 Транзистор 2N2924 2 В блокнот
VD1 Диод 1N5314 1 В блокнот
VD2 Стабилитрон

BZX84C5V6

1 В блокнот
С1 Конденсатор 1 мкФ 63 В 1 К73-16 В блокнот
С2 Конденсатор 0.22 мкФ 63 В 1 К73-16 В блокнот
R1-R3, R12 Резистор

3.9 кОм

4 В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5-R10 Резистор

0.1 Ом

6 С5-16 В блокнот
R11 Резистор

10 кОм

1